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SUMMARY 
A novel Navier-Stokes solver based on the boundary integral equation method is presented. The solver can 
be used to obtain flow solutions in arbitrary 2D geometries with modest computational effort. The vorticity 
transport equation is modelled as a modified Helmholtz equation with the wave number dependent on the 
flow Reynolds number. The non-linear inertial terms partly manifest themselves as volume vorticity sources 
which are computed iteratively by tracking flow trajectories. The integral equation representations of the 
Helmholtz equation for vorticity and Poisson equation for streamfunction are solved directly for the 
unknown vorticity boundary conditions. Rapid computation of the flow and vorticity field in the volume at 
each iteration level is achieved by precomputing the influence coefficient matrices. The pressure field can be 
extracted from the converged streamfunction and vorticity fields. The solver is validated by considering flow 
in a converging channel (Hamel flow). The solver is then applied to flow in the annulus of eccentric cylinders. 
Results are presented for various Reynolds numbers and compared with the literature. 
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1. INTRODUCTION 

The value of computer analysis is now widely recognized by the industrial community. Because of 
this, there is considerable interest in developing generalized numerical algorithms which are more 
flexible and efficient than conventional finite difference and finite element methods. These 
algorithms must handle realistic physical situations involving complex geometries and strong 
non-linear couplings between fluid dynamics, electrostatics, electromagnetics, heat transfer, etc. 
Boundary integral equation methods are being proposed as a possible alternative to domain 
methods. This paper describes the solution of Navier-Stokes equations in the annulus of 
eccentric cylinders using boundary integral equation methods. 

In the past, boundary integral equation methods (BIEM) have been used extensively to solve 
potential flow problems.' KelmansonZ used BIEM to study Stokes flow in the annulus of 
eccentric cylinders. Recently some researchers have extended BIEM to the Navier-Stokes 
equations by using the Stokeslet as the fundamental s01ution.~- The non-linear inertial terms are 
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treated explicitly as volume source terms in these formulations. Clearly, as the non-linear terms 
become significant (as with increasing Reynolds number), the formulations in References 3-5 can 
become numerically unstable. For instance, Bush and Tanner4 were unable to get convergence 
for flow in a converging channel when the Reynolds numbers were greater than 34. In an 
alternative formulation Lean and Domoto6 proposed a novel numerical scheme to solve the 2D 
incompressible Navier-Stokes equations using BIEM coupled with the method of characteristics 
(MOC). In the BIEM-MOC approach the vorticity transport equation is modelled as a modified 
Helmholtz equation with the wave number treated as a function of the flow Reynolds number. 
The fundamental solution of the BIEM-MOC scheme therefore reflects the Reynolds number 
dependence of the equations. It can be shown that as the Reynolds number tends to zero, the 
fundamental solution of the BIEM-MOC scheme is equivalent to the Stokeslet. The non-linear 
inertial terms in the BIEM-MOC scheme partly manifest themselves as volume vorticity sources. 
These vorticity sources are computed on a volume grid using trajectory tracking based on the 
method of characteristics. The present work employs the BIEM-MOC scheme. 

Flow in the annulus of cylinders with one or both cylinders rotating has been studied for a 
number of years. Much of the interest stems from its applications to lubrication technology and 
bearing design. From a theoretical point of view too this problem is of interest because the flow 
undergoes separation when the cylinders are sufficiently eccentric, and also because the flow is 
strongly dependent on the Reynolds number (Re). Exact analytical solutions are available for 
Stokes flow.7 The effect of inertia at low Reynolds number has been studied using perturbation 
theory, where the zero-order solution corresponds to Stokes Sood and Elrod' considered 
rotation of both inner and outer cylinders and obtained solutions of the complete Navier-Stokes 
equations using finite difference methods. Recently some numerical solutions for finite Reynolds 
numbers were presented by San Andres and Szeri'' using a Galerkin procedure and by Korczak 
and Patera" using spectral methods. Unfortunately none of the above-mentioned studies can be 
regarded as numerical benchmarks for this problem. 

The objective of this paper is to demonstrate the efficacy of integral formulations, such as the 
BIEM-MOC scheme, for fluid mechanics problems. Flow in the annulus of eccentric cylinders is 
an attractive test problem because both the geometry and flow characteristics are sufficiently 
complicated. Solutions are presented for the case where the inner cylinder is rotating and the 
outer one is fixed. It should be pointed out that, in reality, two-dimensional flows for this case 
exist only for small rotation rates (low Re) because of the appearance of Taylor vortices along the 
axis for larger rotation rates. Nevertheless, two-dimensional solutions for large Re are an 
interesting computational exercise which can be used to evaluate the performance of numerical 
schemes. The organization of this paper is as follows. First the BIEM-MOC formulation is 
presented. Validation of the numerical scheme is achieved by considering the flow in a converging 
channel (Hamel flow) and comparing with analytical solutions. Next the application of the 
BIEM-MOC scheme to flow in the annulus of eccentric cylinders is discussed. Solutions are 
presented for Stokes flow and for Navier-Stokes flow for different Reynolds numbers and 
compared against the literature. We observe that the solutions for Stokes flow are in excellent 
agreement with previous analytical and numerical studies. The solutions for Navier-Stokes flow 
suggest that the separation phenomena may depend strongly on the Reynolds number. 

2. BIEM-MOC FORMULATION 

We now present briefly the formulation of the BIEM-MOC scheme. Some details about the 
implementation of this scheme are also available in Reference 6. 
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The 2D incompressible Navier-Stokes equations in terms of streamfunction and vorticity 
(*a) are 

V’$=-o, (1) 

V 2 0  = ReDo/Dt, (2) 

where Re is the flow Reynolds number and $ and o have the usual definitions. The substantive 
derivative in equation(2) can be expressed using a backward time difference along the flow 
trajectory (streamline), 

Do o - - o ~  -- w- along $ =constant, 
Dt At 

and equation (2) can be rewritten in the form of a modijied Helmholtz equation, 

V’O- k’o =- k 2 W g ,  (3) 
where k = ,/(Re/At) is the characteristic wave number. 

Integral formulations for equations (1) and (3) can be constructed using standard techniques 
(see e.g. Reference 12). The integral equations are expressed in terms of the free space Green 
function for the Laplace equation (G) and the Helmholtz equation (L). Domain integrals 
involving o are transformed into boundary integrals. The resulting boundary integral representa- 
tion of equations (1) and (3) in a region Y enclosed by boundary 9’ is 

where the kernel functions G, L and H are defined as follows: 

G=(1/2n) In (klr-r’l), L= -(1/2n)K,(klr -r’l), H=G-L. 

Here KO is the modified Bessel function of the second kind and order zero, f=- k’o ,  is treated as 
the volume vorticity source and y is a geometric factor which is derived from the Cauchy principal 
value of the integrals involving the normal derivatives of the kernel functions: 

0, r3V+9, 
1, r E V ,  

y = {  a/2n r E 9 ,  

where a is the internal angle on the boundary. 

a collocation or Galerkin procedure, result in a set of linear equations of the form 
Equations (4) and (5 )  when enforced on discrete elements on the boundary (r EY), using either 

Am + Bo’ + C v  + Dv’ = Pf, 

Ew + Fw’ = Qf, 
(6) 

(7) 
where A, B, C, D, E and F are matrices generated from the integration of the kernels and their 
normal derivatives over the boundary elements, P and Q are matrices generated through volume 
integration of the kernels H and L respectively, w, y, 0’ and y‘ represent column vectors 
containing values of o, $, a o / a n  and a$/an at the boundary nodes respectively and f represents a 
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column vector of values off at the volume nodes. Equations (6) and (7) may be solved for o and 
a’ provided y, y’ or some linear combination of q~ and I‘ are known on 9 Clearly a major 
advantage of such integral formulations is that vorticity boundary conditions need not be 
specified a priori but can be computed directly as part of the solution. 

The velocity field (v) in Y can be computed directly by differentiating equation(4). The 
vorticity distribution in Y can be obtained from equation (5). Since the RHS of equation (6) and 
(7) depend on wo,  an iteration is performed by successively updating the values of wo until 
convergence is attained. 

The method of characteristics (MOC) is used to compute wo from w and v. wo is the value of w 
one At backward in time along trajectories defined by v (see Figure 1). Volume discretization is 
required for the MOC calculation. Quadrilateral elements are used and oo is computed from 
nodal U-values using bilinear interpolation. Underrelaxation is often required for convergence: 

w:+1 =o: +R(o$ -WE)>, 

where R < 1 is the relaxation factor, w$ is the value of wo prior to relaxation and k is the iteration 
level. 

The boundary grid in Helmholtz equation solvers is usually dependent on the wave number. In 
practice the grid dimension is chosen to be a small fraction of the ~ave1ength.l~ In the context of 
Navier-Stokes equations and the BIEM-MOC scheme this implies that fine boundary grids are 
required for large-Reynods-number flows. In addition, fine MOC (volume) grids are required to 
resolve boundary layer phenomena. Accuracy in the MOC calculation can be preserved by 
choosing the time step (At) to be such that the trajectory moves no more than one volume grid 
spacing over At. 

Efficient calculation of o and v in Y at each iteration level is achieved by precomputing the 
influence coefficient matrices (ICMs). The new values of w and v are computed rapidly by 
summing the product of the ICMs with the most recent boundary and source distributions. 
Surface and volume integrals involving singular kernels are evaluated using special schemes 
which exploit the analytical behaviour of the singular kernels. Details of these integration 
schemes are discussed e1se~here.I~ 

StokesJIow (Re=O) needs to be treated in a special way because the kernel functions G and L 
become singular as k + 0. The integral equation representation of Stokes flow is 

Figure 1. Method of characteristics (MOC) calculation for wo at a volume node. (0, o, v defined, x ,  oP(t-At)=W! 
computed; --- flow trajectory) 
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where 

G = (1/2x)ln (I r - r’ I), H =(1/8a)lr - r’I2(ln Ir - r’I - 1). (10) 

Clearly no volume discretization is required for Stokes flow calculations. 

gradients in Y can be expressed as 
Pressure can be recovered from the converged vorticity and streamfunction fields. The pressure 

a p i a x  = - a o / a y  + Revw,  

aP /ay  = awlax - R e u o ,  

(1 1) 

(12) 

where P is the total pressure and u and w are the velocity components in x and y respectively. 
From equations (11) and (12) a Poisson equation for pressure can be written as 

V 2 P  = s,, (13) 

where the source term S p  is Re(vao /ax  - u a o / a y  + 0’). The pressure may be evaluated either by 
integration of equations (11) and (12) along a specified path or through the direct solution of 
equation (13). Since the former method may give different results depending on the integration 
path chosen, the latter is preferred. The boundary integral formulation for equation (13) can be 
written as 

Pressure along the boundary may be evaluated by integrating the tangential derivative of P,  
aP/at,  along the boundary, where 

(15) 

t and n represent the tangential and normal directions respectively. Differences may be taken to 
express aP/a t  in terms of nodal pressure values. Since the BIEM formulation directly solves for w 
and ao lan  on the boundary, P on the boundary can be readily determined. Zero pressure can be 
assumed at some convenient node on the boundary. For multiply connected domains, P can be 
prescribed on one boundary using the aforementioned procedure, while aP/an can be prescribed 
on the other boundaries using equations (1 1) and (12). 

aP/at = - ao /an  + Reov,,;  

3. FLOW IN A CONVERGING CHANNEL (HAMEL FLOW) 

Hamel flow serves as a useful test problem for validating numerical schemes because exact 
analytical solutions of the full Navier-Stokes equations exist for comparison. We consider flow 
between two infinite converging plates with a half-wedge angle of 30”. The computational domain 
is chosen between an outer radius of 4 and an inner radius of 1/4. This identical test problem has 
been considered by Gartling et a l l 5  and also by Bush and Tanner.“ Analytical solutions to 
Hamel flow have been discussed by Gartling et al. A Stokes velocity profile is assumed at the inlet. 
awlan is set to zero at the outlet, which corresponds to uniform pressure at the outlet. 
Additionally, purely radial flow is assumed at the inlet and outlet, i.e. a+/an =O. To exploit the 
symmetry about the midplane, the kernels G, H and L are appropriately modified. Results 
discussed here were obtained using 32 boundary elements and 128 volume elements, which is 
roughly comparable to Grid 1 of Bush and Tanner with 32 boundary elements and 96 volume 
elements. 
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Figure 2. Hamel flow: centreline velocity u,, at r = 1 versus Reynolds number 

Figure 2 shows a plot of the centreline velocity at r = 1 as a function of the Reynolds number. 
Results from the BIEM-MOC scheme and the integral equation approach of Bush and Tanner 
are compared against the analytical solution. The accuracy of the BIEM-MOC scheme appears 
comparable to Bush and Tanner. We observe that the accuracy of the solution deteriorates with 
increasing Reynolds number. This may be a consequence of the coarse mesh as well as the Stokes 
velocity profile assumed at the inlet. One important result is that the BIEM-MOC scheme 
converges even for Reynolds numbers of 100 and above whereas Bush and Tanner report loss of 
convergence for Reynolds numbers above 34. We recall that the Bush and Tanner approach is 
based on using the Stokeslet as the fundamental solution and attribute the improved convergence 
in the BIEM-MOC scheme to the fact that its fundamental solution is dependent on the flow 
Reynolds number. 

4. APPLICATION OF BIEM-MOC SCHEME TO FLOW IN ECCENTRIC CYLINDER 
ANNULUS 

The problem geometry together with a typical MOC grid is sketched in Figure 3. The inner 
cylinder, radius rl, is rotating counterclockwise with angular velocity 0,. The outer cylinder, 
radius r2 = 2r, ,  is at rest. We assume that the axes of the cylinders are separated by distance e 
along the x-axis and define the eccentricity as E = e/(r2 - r , ) .  The Reynolds number Re is defined 
as Re = Vr,/v, where v is the kinematic viscosity of the fluid and V =  0, r1 is the reference velocity. 
All lengths are made dimensionless with respect to r 2 .  
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Figure 3. Problem geometry and a typical volume grid for the MOC calculation 

The boundary conditions on the inner cylinder (9 = Yl) and the outer cylinder (Y = Y2) are 
specified as 

+ = O ,  at,h/an=o on Y=Y2, at,+/an= 1 on Y=Yl. 

The value of t,+ on Yl, is not known a priori and needs to be extracted from the solution. The 
additional equation needed to compute t,hl is obtained by enforcing continuity of pressure on the 
inner cylinder: 

$91 VP-tdY=O, (16) 

where t is the tangential vector. Substituting for VP*t  from equation (15) and setting u, equal to 
zero on a solid boundary, equation (15) can be rewritten as 

f9, d Y  = 0. 

For N boundary nodes on the inner and outer cylinders, equations (6), (7) and (17) give a set 
of 2N + 1 equations to solve for w, w’ and For Navier-Stokes flow the computations are 
repeated until coo converges to a specified tolerance. 

Two sets of results are presented here: 

(1) Stokes flow, 01~109 
(2) Navier-Stokes flow, E=O,  0-5 and OcRe11000. 

A uniform 80-node boundary mesh (40 on each cylinder) was used for the BIEM computation 
and a 400-element volume mesh (see Figure 3) was used for the MOC computation. For the 
concentric cylinder case, 40 boundary elements and 100 volume elements were used. The system 
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matrix was generated using collocation, i.e. the boundary conditions were explicitly enforced on 
each element. All computations were carried out on an IBM 3090-600E computer using the 
vector facility. The CPU time for Stokes flow computations was approximately 3 s. The 
Navier-Stokes flow for the eccentric cylinder cases required approximately 180s for pre- 
computing the ICM matrices and about 1 s per iteration for the transient computation. 

4.1. Stokesflow 

The purpose of the Stokes flow computations was to calibrate the algorithm by comparing 
with exact analytical results. Table I tabulates t,bl and the angle of separation (0,) using zero-order 
elements and linear elements and also provides comparisons with analytical predictions. The 
analytical expressions were first given by Kamal’ and later corrected by Kelmanson.’ Flow 
separation occurs between E = 0.3 and 0.4. 

An interesting observation for Stokes flow in this geometry is the existence of a r-contour at 
r =  1.16 r-contours are mathematical artefacts which appear as a result of the logarithmic nature 
of kernel G. To elaborate this point, consider the case of concentric cylinders (e=O). The integral 
I, =j,,G(at,b/an’)dY’ appearing in equation (8) can be written as 

since at,b/an is constant on 9, and Y;. Evaluating the integrals in the above expression, we obtain 

Clearly, when r2 = 1, I, is independent of (d$/an) ,  and the resulting solution need not satisfy the 
boundary condition on 9’. The r-contour problem can be easily circumvented by redefining the 
kernel functions G and H as 

G=(1/2n)ln(Clr-rr1), H = (1/871)1r --r’lZ [ln (C Ir -r’l)- I], 

where C#  1 is any positive constant. This modification of G and H amounts to rescaling the 
lengths in the problem to avoid a vanishing kernel at unit radius. Results in Table I have been 

Table I. Stokes flow: comparison of numerical and analytical results 

& Zero-order elements Linear elements Analytical 

B,(deg) Error* O,(deg) Error* $1 &(deg) 

0 
0.1 
0.2 
0.3 
0.4 
0 5  
0 6  
0.7 
0-8 
0-9 

02122 
0.2094 
0-201 1 
0.1876 
0.1695 
01475 
0.1222 
0.0944 
0.0648 
0.0330 

0.8 x lo-’’ 
0.7 x 
0.1 x 10-7 
0.1 x 10-7 

-65.6 0.2 x 10-7 
-95.7 0.3 x 10-7 
- 116’0 0.2 x 

- 146.3 0 3  x lo-’ 
- 159.0 0.3 x lo-’ 

- 132.3 0.6 x 

021 13 
0.2085 
0.2002 
01868 
0.1687 
0-1467 
0.1214 
0.0935 
0.0632 
0.0332 

0.2 x 10-12 
0.1 x 10-7 
0.2 x 10-7 
0 3  x 10-7 

-97.3 0.4 x 1 0 - 7  

-133,s 0.1 x 10-4 

-66.3 0.3 x 

-117.9 0 2 ~ 1 0 - ~  

- 146.1 0 3  x 
- 158.0 0 3  x lo-’ 

02121 
0.2093 
02010 
01876 
01696 -57.1 
01476 -831 
0.1223 -1028 
00944 -120.2 
00644 - 136.9 
0.0328 - 154.1 

* Error = I Jy, (ao/an)  dY I is the error in satisfying pressure continuity on the outer cylinder. 
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Figure 4. Streamfunction (+) and vorticity (at) contours for Stokes flow (E=O.S) 
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Figure 5. Tangential velocity in the annulus of concentric cylinders (E=O) 
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obtained using C=l . l  for ~50.8 and C=2 for ~=0.9 .  For large E it is observed that better 
precision can be obtained by using larger values of C. 

are in excellent agreement with analytical results. The separation and 
reattachment points are the points on the outer cylinder where o vanishes. The separation angles 
are observed to be consistently higher than the analytical predictions. KelmansonZ also observed 
higher values of Bs with a maximum discrepancy of 8", even with 160 boundary nodes. This 
discrepancy in the value of 0, is not entirely surprising because the largest errors in boundary 
integral formulations occur near the boundary. Linear elements do not appear to be more 
accurate than zero-order elements. For large E the error in satisfying the pressure periodicity 
condition on the outer cylinder is quite significant, which indicates the need for a finer boundary 
mesh. In Figure 4 the streamfunction and vorticity contours are plotted for ~=0 .5 .  As expected, 
these contours are exactly symmetric about the x-axis. 

The values of 

4.2. Navier-Stokes flow 

We first consider the trivial case of concentric cylinders ( E  =O). For this case the flow solution is 
independent of the Reynolds number. Figure 5 displays the tangential velocity profile in the 
annulus as a function of the Reynolds number. Considerable departure from the analytical 
solution can be clearly observed for Reynolds numbers greater than 600. 

Table I1 summarizes the Navier-Stokes computations for the eccentric cylinder cases ( E  = 0.5). 
A larger number of iterations are required as Re is increased. The iteration count can be 

Table 11. Navier-Stokes flow: summary of computer simulations for ~ = 0 5 ,  At =0025 

Re 

1 
10 
50 

100 
200 
300 
400 
500 

- 

~ ~ ~~ 

Initial a,, 

- 213 
Re= 1 
Re=l 
Re = 50 
Re=100 
Re = 200 
Re = 300 
Re = 400 

n 
0.6 
0 5  
0 4  
0.35 
0.3 
0.25 
0.2 
0.15 

Exit* (%) Error? Iterations 

0.2 
0.2 
0- 1 
01 
0.2 
0.2 
016 
0.12 

7.5 x 10-4 
4.3 x 10-4 
1-2 x 10-4 
1.3 x 10-4 
9.5 x 10-4 
1.5 10-3 
2.1 10-3 
2.7 x 10- 3 

100 
100 
200 
164 
250 
250 
250 
250 

~~ ~~ ~ ~ ~ ~~ 

* Exit=max I(wgt "-w$')/o$'l is the convergence criterion. 
t Error=I(l/kZ)I (ao/dn)dYI is the error in satisfying pressure continuity on the outer cylinder. 

Ya 

Table 111. Navier-Stokes flow: JI1. 0, and 8, versus Re for 
E = 0.5, At = 0025 

1 
10 
50 

100 
200 
300 
400 
500 

0.1475 - 96.2 96.2 
01478 - 94.7 94.6 
0.1474 -91.8 91.0 
0.1452 - 95.6 93.7 
01356 - 109.2 108.4 
0.1203 - 1223 124.9 
0.1004 - 136.7 141.4 
0.0779 
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optimized by using converged results from previous runs as initial guesses for coo. As Re is 
increased, the non-linear advection terms in the Navier-Stokes equations become significant and 
the evaluation of oo becomes critical. Accurate evaluation of oo is often difficult in regions of 
sharp gradients such as boundary layers. The error term in Table I1 signifies the extent to which 
pressure periodicity is satisfied on the outer cylinder. Although the pressure periodicity condition 
is not explicitly enforced on the outer cylinder, it must still be satisfied by the converged solution. 
The observed discrepancies are primarily due to accumulated errors in the wo calculation during 

STREAMLINES VORTICIW u 

Figure 6. Streamfunction (+) and vorticity (a) contours for Navier-Stokes flow 
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the MOC procedure. These errors may be reduced by using a finer volume mesh or a spatially 
graded mesh. 

the separation angle (&) and the reattachment angle (6,) as a 
function of Re. The solution for Re= 1 is consistent with the Stokes flow solution for ~=0.5.  t,h, is 
the volume flow rate between the inner cylinder and the separation streamline. We find that 
decreases consistently with Re for Re> 100. These appears to be some controversy in the 
literature regarding the effect of inertia on the separation and reattachment points. The perturba- 
tion analysis of Kama17 suggests that the effect of inertia is to move the point of separation 
against the direction of R, and the point of reattachment in the direction of R,,  which is 
supported by Sood and Elrod' as well. However, results of San Andres and Szeri" suggest that 
the separation point moves in the direction of R, whereas the reattachment point maves against 
the direction of Q, as Re is increased. Our results agree with San Andres and Szeri for low Re 
(Re < 50) and with Kamal for higher Re. For Re = 500, o is greater than zero everywhere on the 
outer cylinder, which indicates that both points of separation and reattachment are within one 
boundary element. 

The vorticity and streamlines contours as a function of Re are plotted in Figure 6. The centre of 
the separation eddy moves in the direction of rotation, which is consistent with the literature.'-" 
The +-value at the centre of the separation eddy increases with Re because of the stronger 
recirculation. 

Table I11 gives the values of 

1.0 

. 9  

.8  

.7  

. 6  

. 1  

0 
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- .2  

-. 3 
.2 . 3  .4 .5 .6 .? . 8  .9 1.b 

5 

Figure 7. Tangential velocity distribution at the narrow gap for c = 0 3  



FLOW IN ANNULUS OF ECCENTRIC CYLINDERS 367 

The tangential velocity profiles at the narrow gap (0 = 180") and the wide gap (O=Oo) are 
shown in Figures 7 and 8 respectively. In the narrow gap the tangential velocity gradient (&,/an) 
on the outer cylinder approaches zero as Re is increased to 500. Since au, /dn=O on the solid 
boundary implies zero vorticity, it appears as though both the points of separation and 
reattachment for Re = 500 are at 8, = 0, = 180". The tangential velocity profile in the wide gap 
(Figure 8) indicates an increased region of separation (negative velocities) as well as higher 
velocities in the separation eddy at higher Reynolds numbers. The shapes of the tangential 
velocity profiles for low Re are consistent with Sood and Elrod.' 

The effect of inertia on the static pressure distribution is shown in Figure 9. Zero pressure is 
assumed at 8= 180" on the inner cylinder. For Stokes flow (Re=O) the pressure contours are 
exactly antisymmetric about the x-axis, with the region of positive pressure above and the region 
of negative pressure below. Upon inclusion of inertial effects the antisymmetric behaviour 
disappears and an increased region of positive pressure is observed. For Re= 10 the region of 
positive pressure can be observed extending below the x-axis. For Re = 50 and 100 the region of 
negative pressure shrinks even further and appears to be localized around the inner cylinder, 
while positive pressure exists everywhere else. 
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Figure 8. Tangential velocity distribution at the wide gap for E=O.! 
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Re = 0 R e =  10 

R.e = 50 Re = 100 

Figure 9. Effect of inertia on the pressure distribution in the cylinder annulus 

5. CONCLUDING REMARKS 

A novel Navier-Stokes solver based on boundary integral methods is discussed here. This 
method differs from past attempts to use integral equation methods on Navier-Stokes equations 
in that the fundamental solution depends on the flow Reynolds number and consequently has 
better stability at high Reynolds numbers. The scheme offers the traditional advantages of 
boundary integral methods such as reduced problem size and ability to handle arbitrarily shaped 
2D geometries including multiply connected regions. Another key advantage is being able to 
zoom into the problem domain and obtain high-resolution field data during post-processing 
without needing to recompute the solution. 

We foresee two areas of improvement to the BIEM-MOC scheme. The first involves improv- 
ing the accuracy of the MOC procedure. In the solution of purely advective flows using the 
method of characteristics it is now known that evaluating the dependent parameter along the 
trajectory using a bilinear interpolation of the four surrounding nodal values introduces excessive 
numerical damping. This damping can be eliminated by using higher-order interpolations (such 
as Hermite bicubic”) which are constructed from the nodal values of the dependent parameter 
and their derivatives. The current implementation of the BIEM-MOC scheme uses a bilinear 
interpolation in the MOC procedure, and this will be inadequate at high Reynolds numbers when 
advection dominates. The second area of improvement relates to the rate of convergence of the 
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iterative procedure. A combination of Newton-Raphson and relaxation schemes may provide a 
faster rate of convergence. In its present form the BIEM-MOC scheme appears to provide good 
accurate solutions for low Reynolds number and stable but less accurate solutions at higher 
Reynolds numbers. The use of influence coefficient matrices (ICMs) provides a way to rapidly 
compute boundary and volume fields during iterations. Further enhancements in speed are 
possible with the use of parallel processing. Natural extensions to the present work could involve 
extending the scheme to primitive variables and to 3D geometries. 
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